SN-549,086 17+40000 NFICENTIA

This invention relates to a device or machine, which may be used either as a cryptograph for enciphering and deciphering communications, or as an authentograph for testing the authenticity of messages.

The primary object of this invention is to provide a oryptograph or cipher device which is simple in construction and maintenance, but nevertheless affords a high degree of security, is light and readily portable, and can be readily disassembled and rearranged to vary the cipher keying elements.

Another object of this invention is to provide an authentograph, that is, a device for testing the authenticity of a message or signal, thereby providing means for assuring that such a message or signal originated at an authorized source and is to be considered authentic.

An additional object is to provide a novel keyboard for use with a cryptograph and an authintograph.

Another object is to provide a novel method for the authentication of messages.

Other objects of the invention will become apparent from a reading of the following specification and claims.

In the drawings:

Figure 1 is a top or plan view with the covers closed.

Figure 2 is a top or plan view on an enlarged scale with the keyboard cover and parts of the rotor cover omitted.

Figure 3 is a side elevation with the covers closed.

Figure 4 is a cross section on line 4-4 of Figure 2 with the rotor cover smitted.

Figure 5 is a perspective view of the rotor latch.

Figure 6 is a perspective view of the rotor actuating mechanism.

-2-

at amendment

CONFIDENTIAL

Figure 7 is a diagram showing schematically the electric circuits and the mechanical operating mechanisms.

Figure 8 is a view of a portion of the device, illustrating a modified keyboard and switching means.

Figure 9 is a view of a rotor such as is used in the device of this invention.

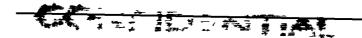
The embodiment of the invention selected from among others for illustration in the drawings and description in the specification is as follows. Referring to Figure 7, the device will be seen, in general, to consist of a source 10 of electricity, connected to a pair of wires 11 and 12 across which are connected a plurality (in this instance, twenty-six) indicators 15A, 13B, 13C, etc. These indicators are illustrated as being electric lamps arranged beneath a keyboard and indicator panel 14 (see Figure 2) and each arranged to illuminate one perforation closed by a transparent cover 15 bearing one letter 16 of the alphabet thereon. Panel 14 is secured in place over a gasket 14' of soft rubber or the like Across lines 11 and 12 are also connected manually operable switches 17A, 17E, 17C, etc., each in series with one of the indicators 13A, 13B, etc., arranged for operation by pushbuttons 18 projecting through keyboard 14 in proximity to the covers 15.

-5-

Connected to each of the indicators 13A, 13B, etc., is a multicontact electric switch, generally indicated as 19. It comprises a number of relatively juxtaposable and rotatable oryptographic switching wheels or rotors, 19A, 19B, 19C, and 19D, in cascade, each rotor having a plurality of spring input and output contacts 19' thereon (see Figure 9), and a final wheel 19E, which may hereinafter be called the reflecting rotor or reflector, the output contacts of which are connected in pairs, as shown diagrammatically at 20' in Figure 7. Each electrical path, as 20, through the rotor system 19 leads from one stationary contact 20" through the oryptographic rotors, and back, through 20', to another stationary contact 20". These paths or circuits 20 are rearranged each time one of the rotors is turned.

In conductor 11 there is a normally-closed electric switch 21. Between one of the indicators, in this case 13E, and multi-contact switch 19, there is a normallyclosed electric switch 22. In parallel with wire 11 is wire 11A containing an authenticating switch 23 having an operating handle 24. Wire 11A also contains a normally-open switch 25.

Turning now to Figures 1, 2, and 3 for a disclosure of the mechanical features of the invention, the device is shown as enclosed in a casing 26 to which are hinged or otherwise attached a back cover 27 and a front cover 28.


4.

NELENTIAL

The front cover, protecting the keyboard, is secured to casing 26 by means of a double hinge 28', 28". This arrangement permits the cover to fit snugly upon gasket 14*, thereby to provide a substantially dust-proof and water-proof closure for the keyboard 14, and yet permits it to lie flat in front of the machine or to be folded therebeneath. The back part of the casing 26, adjacent the rotor assembly, is provided with a lip 26* (see Figure 2). Back cover 27 is adapted to fit over this lip, and has a gasket 27', which provides, upon closure of the back cover, a dust-proof and moistureproof seel. The port we back covers when cared on secured by means I happe "3' and "3", respectively . In the top of casing 26 there is an opening 29 through which a counter 30 is visible. As is most readily seen in g Figure 6, casing 26 has two projecting wells 26A and 26B, which are expected and strengthened by a rod 26C. The cryptogrophic switching ascembly 19 is retained between these walls by a mechanism which will now be decoribed. Wall 26A has an orifice therein through which may be pushed pin 30A having a knurled head 51 (Figure 2) and a latch 32 cooperating with a retaining spring 33. Also pivoted on wail 26A is a spring latch 34 of U-shape, one arm being bent back parallel

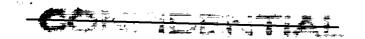
a

to the other. The free end 34A of latch 34 is perforated to allow pin 30% to pass through it and bears cam surfaces 35 thereon. Stationary can 36 has a surface complementary to cam surfaces 35 so that when latch 34 is moved from the

-5-

substantially horizontal position, in which it is shown in Figures 2, 4, and 6, into the vertical position, in which it is shown in Figure 5, the free end 34A of latch 34 is moved away from wall 26A and compresses the entire rotorreflector assembly so as to insure good contacts through the spring contacts 19¹ thereof.

The manuelly operated means for rotating the cryptographic rotors 19 will next be described. As seen in Figures 1, 2, 3, and 6, casing 26 has a recess 37 in its top into which fits a plunger consisting of fingerpiece 38 having a sliding fit in the receas and a rod 89 upon which the fingerpiece is mounted. Rod 39 causes U-shaped stirrup 40 to turn on its pivots in walls 26A and 26B. On stirrup 40 is a can 41, which actuates follower 42 fast on shaft 43 of counter 30. Stirrup 40 also has a member 44 to which spring 45 is attached and which carries cam face 46. Detent 47 is pivoted at 48 in walls 26A and 26B and is stressed by spring 49 so that cam 50 engages cam face 45. Spring detents 60 normally hold rotors 19 in their relative positions but allow movement of these rotors under the actuation of pawls 58. Detent teeth 51 are moved in and out of the ratchet depressions in the surface of the rotors 19 upon each movement of stirrup 40, as will be hereinafter further described.



-6-

A Read and A Read And

Stirrup 40 carries a pin 52 on which are pivoted a plurality of cam-and-pawl devices, 53A, 53B, 53C, and 53D, which are urged by springs 54 against the rotors (see Figures 5-and 9). Device 53B, for example (Figure 6), has a cam 55B and a pawl 58B, and these are adapted to cooperate, respectively, with ratchet depressions56 of rotor 19A and pawl notch 55D on the rotor 19B.

The operation of this device is as follows: Cover 28 \sim is opened to expose the keyboard 11, as frequently happens, limitations of space require, the cover may be folded back beneath the machine. For enciphering or deciphering, handle 24 is operated so that switch 23 is open. That push button 18 which is associated with the desired letter is depressed and the switch controlled thereby is operated. For example (to encipher the letter E), if push button 18 associated with the letter E is (figure 7) depressed, switch 17E/is thereupon closed, and connection is made from battery 10 through line 11, switch 21, line 11B, switch 17E, lamp 13E, and line 12 back to source 10, illuminating lamp 13E. This action also closes connections from battery 10 through lines 11, 118, through switch 17E, then along line 11C, through switch 22, line 20, thence through rotors 194, B, C, D and reflector 19E, rotors 19D, C. B. A. to line 20B, lamp 13Z, thence through line 12, back to source 10. Lamps 13E and 13Z, are simultaneously lighted, and this indicates that the oipher equivalent of the letter E is Z. To decipher the letter Z, the push button 18 associated with the letter 2 is depressed and the circuit is as follows: battery 10, line 11, switch 21, line 11D, switch 172, line 20B, through the

~?~

rotor-reflector assembly, line 20, switch 22, line 110, lamp 13 E, line 12, back to battery 10. Lamp 13 E would be illuminated, giving E as the plaintext equivalent of Z. At the same time the lamp 13 Z would also be lighted by the closing of switch 17Z and by a circuit which is essentially similar to the one described in connection with the closing of switch 17E. Thus, since rotors 19 connect all the lamps 13 A, 13 B, etc., and all the switches 17A, 17B, etc., together in pairs, each letter has another corresponding to it.

For rotating the cryptographic rotors 19 and thus varying the connections between the various pairs of lamps 13 and switches 17, the plunger 38 is depressed, stirrup 40 is rotated about its pivots and the members 53A, etc., moved. A pawl 58 will mormally ride on a rim 57 of a rotor, and, under these conditions, its associated cam face 55 can not enter a ratchet depression to step an adjoining rotor notwithstanding the urging of its spring 54. As soon, however, as a pawl falls into a pawl notch 55D it and its cam member move upwardly somewhat the toward the rotors and the latter engages a ratchet depression. Then, on movement of stirrup 40, the rotor in question is stepped. It will be noticed that, in view of the manner in which tang 59 of device 53A underlies device 53B, etc., device 53A can not move upwardly unless device 53B has so moved. The pawl member of device 53D rises on each on each operation of stirrup 40, as it drops over shoulder 58' of member 60'. The result is that rotor 19E steps each time the stirrup 40 moves, rotor 19D steps once for each revolution of 19E, 19C steps once for each revolution of 19D, etc. It is, in other words, the cam face 55 engaged in a peripheral slot 56 and impelled by rotary motion imparted to it by plunger 38-39 which actually serves to step the rotor. The cam face cannot, however, enter into one of the notches until the cooperating pawl enters an auxiliary notch 55D.

Whenever a cam 55 drops into a notch 56, and the movement of the plunger 39 is completed, the corresponding rotor 19 is moved one step. This re-arranges the connections through the rotors and connects different pairs of lamps 13A,

CONFIGMENTIA!

-8-

etc., together. Counter 30 is moved one numeral because follower 42 is depressed by can 41 and spring returned. Detent 47 prevents overstepping of the rotors 19 because teeth 51 enter notches in rotors 19.

A detailed description of the operation of the device as an authentograph for insuring the authenticity of a message or a signal will now be given. Assuming that agreement has been previously reached by the two parties concerned as to the wiring of the several rotors and their arrangement in the device, the counter is set to zero, and switch 23 is closed by snapping handle 24. Plunger 39 is then depressed, opening switches 21 and 22 and closing switch 25. This movement moves counter 30 one position forward and also one or more rotors 19 one step. The following circuit is then established; Source 10, line 11, Line 11A, closed switch 23, closed switch 25, line 20, thence through the rotor system to whichever lamp happens to be paired with lamp 13E at the moment. Suppose it to be K. The circuit to lamp 13E is at this time open at switch 22 so that lamp E is not illuminated but only the lamp corresponding to its enciphered equivalent, namely, K. The letter which is thus paired with 13E becomes an authenticator, which will, of course, be duplicated on a machine similarly set to the same key.

Now suppose that the device is being used to authenticate a plain-language message sent from station A to station B. Having transmitted the message, station A operates its device and finds the authenticating letter to

~9~

ODNFICENTIAL

be I, for example. This letter is transmitted as the authentication; station B, operating its device, finds that I is correct and hence is marranted in its belief that the message come: from an authorized source. Upon the next authentication, the letter will be different, since one or more of the rotors will have been advanced on the operation of the plunger 38.

To remove the rotors 19, cover 27 is opened, latch 34 moved from the upright position of Figure 5 to the horizontal position of Figure 6 which allows can 35 to enter the corresponding groove in stationary can 36. The compression on the rotor assembly is relieved and, then pin 30 is removed, the rotors can be readily lifted out. To replace the rotors they are merely set in their approximate positions, pin 30 pushed through wall 264 up to its head 31, and latch 34 raised. In the preferred embodiment, the latch, when lowered, extends beyond the end of wall 264. It thus prevente the closing of the rear cover 27. Since the back cover should normally be closed, the feature mentioned serves to assure that the latch will be up and the rotor-reflector assembly properly compressed.

The modifications of Figure 8 included a viewing panel 60, similar in appearance to the viewing panel and heyboard 14 of 60, similar in appearance to the viewing panel and heyboard 14 of 7 igure 3. In place of push buttons 13, however, viewing panel 60 is provided with contacts only, as 61. These contacts, as shown, consisting marries of small circular elements of conducting material all connected by a cormon return wire 12 to the battery 10. With reference to figure 7, contacts 61 may be considered as replacing switches 17a, 175, etc. In place of the push buttons 18, a stylus 62 is provided and whis may be considered to be connected to conductor 11 of Figure 7. Encipherment or decipherment is accompliched by making contact between stylus 61 and a desired contact 61 on panel

60.



CONTINE

The above description is in specific terms, but it is to be understood that the invention is not limited to the precise structures and circuits shown and described. Instead, for the true scope of the invention, reference should be had to the appended claims.

I claim:

-

CONTINTIAL

I. In a expriograph having relatively rotatable electric switches arranged in cascade therein, a plunger (or the like) arranged for manual operation, means associated with said plunger and cooperating upon depression thereof with one of said electric switches for angularly displacing the same, means associated with said plunger and cooperating upon depression thereof with another electric switch for angularly displacing the same after a predetormined angular displacement of said first mentioned switch, and a brake operable by said plunger through a lust-motion connection for preventing more than a desired angular displacement of any switch.

2. In a cryptograph, the combination of a source of current, a plurality of input and output contacts, a plurality of indicating devices each with a normally open circuit between it and an input contact and a normally open circuit between it and every output contact, and a switch associated with each of said indicating devices and adapted when closed to complete its said first mentioned circuit and one of said second mentioned circuits.

J. The combination of Claim 2, further characterized by means for varying the selection of a second montioned circuit to be completed upon the closing of a switch.

4. The combination of Claim 2, further characterized by a plurality of mixing rotors, the normally open circuit between a said indicating device and the said output contacts including said rotors.

5. In a cryptograph, a plurality of cryptographic rotors, stationary input and output contacts adapted to be connected variably in pairs through said rotors, an indicator connected to each of said stationary contacts, a switch associated with each indicator, and a source of current whereby the closing of one of said switches will close a circuit through a selected input contact and its associated indicator and an output and its indicator.

a

æ

6. The invention of Claim 5, further characterized by means for stopping the rotors.

7. The invention of Claim 5, further characterized by a plunger (or the like) adapted then depressed to step) a rotor the depressed.

8. The combination with a cryptographic device having a plurality of electrical inputs for the characters to be enciphered, a plurality of electrical cutputs for the enciphered equivalents of said characters, a viewing panel (or the like) including a lamp for each character, a switch associated with each lamp and with a source of current, and a plurality of circuits each including said source, one of said switches, a lamp associated therewith, an input corresponding to the character represented by said lamp, and a lamp corresponding to the output associated with the last mentioned input, whereby the closing of one of said switches will light a lamp representing a character to be enciphered and a lamp representing the enciphered equivalent of said character.

So In a cryptograph, the combination of a plurality of electrical inputs for the obstractors to be enciphered, a plurality of electrical outputs for the enciphered equivalents of said charactors, a source of current, a viewing panel or the like including a lamp for each character, an electrical contact associated with each lamp, a contacting member, and a plurality of normally open circuits each including said source, said contacting member, one of said electrical contacts, the lamp and input corresponding to the character associated with said contact, and a lamp corresponding to the output associated with the last mentioned input, thereby a contact between said contacting member and one of said contacts will light a lamp representing the exciphered equivalent of said character.

de.

,3

ENT

10. In an authentograph, a source of ourrant, a plurality of aryptographic rotars, stationery contexts adapted to be connected turality of parallel curcuits inclin pairs variably through said rotors, an indicator connected, to each to auto mite any of said stationary contacts, a plunger or the like adapted when de-, coman, pressed to displace angularly one or more of said rotors,) a switch controlling a circuit between one stationary contact and another stationary context and its indicator, and a further normally open switch means depted to be closed by said plunger thereby to energise the indicator a totar rentepping to band other statument control and and additional normally open switch is closed. 11. In a combination with a cryptographic device (adapted to) (receive)input signals representing characters to be enciphered and to mix the signals and/ to indicate to an operator both input and enciphered aperactors, an authenticator (depted) when actuated (to indicated the apland subput obsrector associated with a predatorsined input character. 12. In organization with a cryptographic device adapted to receive light signals representing characters to be enalphored and

including a set of eryptographic rotors in esscade for mixing the signals, means for indicating to an operator both input and enciphered characters, means for stepping the rotors, and means for recording the steps of said rotors, and an authanticator adapted when actuated to indicate only the enciphered character instantaneously associated with a predetormined input character.

13. The method of providing an authentication for a message comprising characters enclohered by a set of cryptographic stepping a-deriving rotors which includes recording the steps of the rotors and utilizing) the enciphered equivalent of a predstarmined character after a prodetermined number of steps of said rotors.

CONFIDENTIAL

REF ID:A363201-

14. The method of authenticating a massage by characters enciphered by an electrical system of stepping cryptographic rotors having an input contact and an output contact for each character which comprises providing a circuit including a predetermined input contact and an output contact dependent upon the instantaneous positions of said rotors, and utilizing the enciphered equivalent of the character associated with said predetermined input contact for known conditions of said rotors.

15. In a cryptograph containing a plurality of rotors in massade, a latch for stressing said rotors in position, comprising a R-shaped member of spring material having one and pivotally mounted and the other and free for longitudinal movement into and out of contact with one and of the said rotors, a can surface on said free and, and a stationary can cooperating with said can surface to move said free and when said latch is turned about its pivote.

Carriel

to her

16. In a keyboard for a device of the character described, a switching element for each character which may be utilized in operation, each of said switching elements being adapted upon actuation to P_{D} *unmediatel* operate a switch, and an indicator, adjacent each switching element.

17. In a keyboard for a device of the abaracter described, a switch for each character which may be utilized in operation, a push button or the like extending through the keyboard and adapted upon depression to close a switch, an indicator for each abaracter which may be utilized in operation, each of said indicators being adjacent to one of said push buttons, and means for connecting said indicators and said switches whereby the depression of a push button will emergize at least one indicator.

REF ID:A363201--

CONFIDENTIAL

18. In a keyboard for a device of the character described, a switch for each charactor which may be utilized, a push button (or) the like) extending through the keyboard and adapted upon depression to alose a switch, an indicator for each character which may be utilized, each of said indicators being adjacent to one of said push buttons, and means for connecting said indicators and said switches whereby depresssion of a push botton will energize the indicator adjacent thereto and another indicators? America complete Unconter .

19. In a device of the character described utilizing rotors having ratchet depressions in the peripheny thereof and a paul notch, means for stepping the rotors including a stirrup (or the like) having a limited rotary movement, means for normally holding said stirrup in an inoperative condition, a plurality of can-and-paul devices carried by said stirrup, a can being adapted for cooperation with a ratchet depression of a rotor and a peul being adapted for cooperation with a paul notch of another rotor, means for moving said stirrup, means dependent upon said movement for examing a can of a can-and-paul device is cooperate with a ratchet depression of a rotor, and means for prevonting another can from cooperating with a ratchet depression of another rotor unless the paul of said last monitored cam-and-paul device is also cooperating with a paul notch.

- The invention of Glaim 19, further characterized by a nanually operable plunger for moving said stirrup.

2 21. The invention of Clairs 19, further characterized by means for restoring said stirrup to its inoperative condition after povement.

22. The invention of Glain 19, further characterized by means including detant teeth (or the like) dependent upon movement of said stirrup for moving into engagement with ratebat depressions of the rotors, thereby to prevent overstepping thereof.

CONFIDENTIAL

23. The invention of Ulaim 19, further characterized by spring detents or the like adapted to rest in the ratchet depressions of the rotors to inhibit the rotation thereof.

4

24. 4 cryrtographing and authenticating mechine substan-

1. In a cryptograph having relatively rotatable electric switches arranged in cascade therein, a plunger arranged for manual operation, means associated with said plunger and cooperating upon depression thereof with one of said electric switches for angularly displacing the same, means associated with said plunger and cooperating upon depression thereof with another electric switch for angularly displacing the same after a predetermined angular displacement of said first mentioned switch, and a brake operable by said plunger through a lost-motion connection for preventing more than a desired angular displacement of any switch.

8. The combination with a cryptographic device having a plurality of electrical inputs for the characters to be enciphered, a plurality of electrical outputs for the enciphered equivalents of said characters, a viewing panel including a lamp for each character, a switch associated with each lamp and with a source of current, and a plurality of circuits each including said source, one of said switches, a lamp associated therewith, an input corresponding to the character represented by said lamp, and a lamp corresponding to the output associated with the last mentioned input, whereby the closing of one of said switches will light a lamp representing a character to be enciphered and a lamp representing the emciphered equivalent of said character.

18. In a keyboard for a device of the character described, a switch for each character which may be utilized, a push button extending through the keyboard and adapted upon depression to close a switch, an indicator for each character which may be utilized, each of said indicators being adjacent to one of said push buttons, and means for connecting said indicators and said switches whereby depression of a push button will energize the indicator adjacent thereto and another indicator to show the enciphered character.

19. In a device of the character described utilizing rotors having ratchet depressions in the periphery thereof and a pawl notch, means for stepping the rotors including a stirrup having a limited rotary movement, means for normally holding said stirrup in an inoperative condition, a plurality of cam-and-pawl devices carried by said stirrup, a cam being adapted for cooperation with a ratchet depression of a rotor and a pawl being adapted for cooperation with a pawl notch of another rotor, means for moving said stirrup, means dependent upon said movement for causing a cam of a cam-and-pawl device to cooperate with a ratchet depression of a rotor, and means for preventing another cam from cooperating with a rachet depression of another rotor unless the pawl of said last mentioned cam-and-pawl device is also cooperating with a pawl notch.

C REF. ID: A363201

22. The invention of Claim 19, further characterized by means including detent teeth dependent upon movement of said stirrup for moving into engagement with ratchet depressions of the rotors, thereby to prevent overstepping thereof.

25. In a cryptograph including a sourch of current, a plurality of indicating devices, a normally open switch for each said indicating device, a plurality of permutable electric paths interconnecting said indicating devices in pairs, and means for permuting said paths, two circuits closable by closing each said switch, one including said source of current, the closed said switch, and the said indicating device thereof, and the other including said source of current, the closed said switch, one of said permutable paths, and the interconnected said indicating device.

26. A cryptograph according to claim 25, further characterized by a manually operable switch, and a further switch having two operable positions interposed in a selected one of said other circuits alternatively to connect in its first position the permutable path of said selected circuit to said normally open switch thereof and in its second position to connect said permuting means for causing said further switch to assume its said second position thereby to close an authenticator circuit including said source of current, said manually operable switch, said further switch, said further switch, said indicating device.

CONFIDENTIAL

23. The invention of Claim 19, further characterized by spring detents adapted to rest in the ratchet depressions of the rotors to inhibit the rotation thereof.

-CONFIDENTIAL

25. In a cryptograph including a source of current, a plurality of indicating devices, a normally open switch for each said indicating device, a plurality of permutable electric paths interconnecting said indicating devices in pairs, and means for permuting said paths, two circuits closable by closing each said switch, one including said source of current, the closed said switch, and the said indicating device thereof, and the other including said source of current, the closed said switch, one of said permutable paths, and the interconnected said indicating device. 26. A cryptograph according to claim 25, further characterized by a manually operable switch, and a further switch having two operable positions interposed in a selected one of said other circuits alternatively to connect in its first position the permutable path of said selected circuit to said normally open switch thereof and in its second position to connect said permutable path of said selected circuit to said manually operable switch, means operable by said permuting means for causing said further switch to assume its said second position thereby to close an authenticator circuit including said source of current, said manually operable switch, said further switch, said permutable path of said selected circuit, and the interconnected said indicating device.