MEMO ROUTING SLIP NEVER USE FOR APPROVALS, DISAPPROVALS, CONCURRENCES, OR SIMILAR ACTIONS.				
1 NAME OR TITLE Stars	t	INITIALS		CIRCULATE
1 NAME OR TITLE S/Cause ORGANIZATION AND LOCATION	1. Friedman	DATE		COORDINA- TION
2				FILE
				INFORMATION
3	· .		-	NECESSARY
-				NOTE AND RETURN
4	<u> </u>			SEE ME
	· · · · · · · · · · · · · · · · · · ·		-	SIGNATURE
REMARKS		•		· · ·
ROM NAME OR TITLE DSA - 314		M I	June	
FROM NAME OR TITLE DISA - 314 DRGANIZATION AND LOCATION 17-117		60391		
DD 1 FEB 50 94, REPLACES NME FORM 94, 1 FEB 40, WHICH MAY BE USED. 10-50303-3 000				

REF ID:A67570

Approved for Release by NSA on 10-30-2013 pursuant to E.O. 13526

A METHOD FOR GENERATING IRREDUCIBLE POLYNOMIALS

A. Gleason R. W. Marsh NSA-314 26 May 1955

It was observed that, if the polynomial $f(x) = \sum_{i=0}^{P} \alpha_i x^i$ (coefficients in GF(2)) is irreducible and its root has maximum period 2^{P} -1, then the polynomial $F(x) = \sum_{i=0}^{P} \alpha_i x^{2i-1}$ is irreducible and its isorot has maximum period. This was verified in all cases up to P = 5. We shall give a proof that F is always irreducible but leave unsettled the question of whether its roots are primitive.

Let K be a finite field of cardinal q (which must be a prime power and, in the case of particular interest, is 2). Let K* be a minimal algebraically closed field containing K. For each positive integer n there is in K* a unique field K^n of degree n over K; K* = $U K^n$. We may regard K* as an infinite dimensional vector space over K; then each of the fields K^n is a vector subspace.

Let \ll be the mapping $x \rightarrow x^{q}$ of K* into itself. Lemma 1. $\Theta \in K^{n} \leftrightarrow \propto^{n} \Theta = \Theta$ Proof: The field K^{n} has q^{n} elements, and the $q^{n} - 1$ non-zero elements from a group under multiplication. By the theorem of Lagrange every element of this group satisfies the relation $\Theta^{q^{n}-1} = 1$, whence every element of K^{n} satisfies $\Theta^{q^{n}} = \Theta$. This proves one half of the lemma. The polynomial $x^{q^{n}} - x$ can have at most q^{n} roots in K*. Hence all of the roots are in K^{n} . This proves the second half of the lemma. REF ID:A67570

The mapping \ll is an automorphism of K* since it evidently satisfies $\propto (\Theta \varphi) = \propto(\Theta) \propto (\varphi)$ and $\propto (\Theta + \varphi) = \propto (\Theta) + \ll (\varphi)$ because q is a power of the characteristic. We have seen that $\propto \Theta = \Theta$ if

 $\Theta \in K = K'$. Hence \propto is a linear transformation of K* regarded as a vector space over K.

Lemma 2. If $\Theta \in K^*$, the degree of Θ is the least positive integer n for which $\propto {}^n \Theta = \Theta$

Proof: Obvious from lemma 1.

Theorem: Let $f = \sum_{i=0}^{p} b_i x^i$ be an irreducible polynomial of degree p i=0 over K whose roots are primitive in K^p . Then $F = \sum_{i=0}^{p} b_i x^{q^i-1}$ is an irreducible polynomial of degree $q^p - 1$.

Proof: Consider any root Θ of F. Evidently $\Theta \neq 0$. We have then $0 = \Theta F(\Theta) = \sum_{i=0}^{P} b_i \Theta^{i} = \begin{pmatrix} P \\ \Sigma \\ i=0 \end{pmatrix} = f(\alpha) \Theta$.

The set of all polynomials P such that $P(\boldsymbol{\alpha}) \boldsymbol{\Theta} = 0$ is an ideal of in the polynomial ring over K. Since this ring is a principal ideal ring and cl contains the irreducible polynomial f, cl is either the unitideal or the principal ideal (f). The former possibility implies $\boldsymbol{\Theta} = 0$ which is false, so cl = (f). By lemma 2, the degree of $\boldsymbol{\Theta}$ is the least integer n for which $(\boldsymbol{\alpha}^n - 1)\boldsymbol{\Theta} = 0$, that is, the least integer n for which $\mathbf{x}^n - 1 \in (f)$. Since the roots of f are primitive this integer is $2^P - 1$.

The minimal polynomial for Θ is therefore an irreducible polynomial of degree 2^{P} -) which dividus F. Comparing degrees we see that the

2

quotient is in K, hence F is irreducible. q.e.d.

It may be remarked that in case f does not have primitive roots we can see that F splits into irreducible factors of degree equal to the order of the roots of f.

Concerning the second question as to whether F has primitive roots in the case K = GF(2), it may be remarked that if true we could then obtain an algebraic recursion giving only irreducible polynomials by iterating the procedure. Since this is closely related to a prime generating function, it is rather unlikely to be provable by elementary methods, if true. Starting with q = 3, K = GF(3), and the irreducible polynomial $x^2 - x - 1$ which has primitive roots we obtain the irreducible polynomial $x^3 - x^2 - 1$, whose roots have order 160, a far cry from being primitive. This also indicates that any proof would have to rely on number theoretic properties of the number 2.